skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reda, Khairi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. null (Ed.)
  3. Abstract BackgroundDirect-sequencing technologies, such as Oxford Nanopore’s, are delivering long RNA reads with great efficacy and convenience. These technologies afford an ability to detect post-transcriptional modifications at a single-molecule resolution, promising new insights into the functional roles of RNA. However, realizing this potential requires new tools to analyze and explore this type of data. ResultHere, we present Sequoia, a visual analytics tool that allows users to interactively explore nanopore sequences. Sequoia combines a Python-based backend with a multi-view visualization interface, enabling users to import raw nanopore sequencing data in a Fast5 format, cluster sequences based on electric-current similarities, and drill-down onto signals to identify properties of interest. We demonstrate the application of Sequoia by generating and analyzing ~ 500k reads from direct RNA sequencing data of human HeLa cell line. We focus on comparing signal features from m6A and m5C RNA modifications as the first step towards building automated classifiers. We show how, through iterative visual exploration and tuning of dimensionality reduction parameters, we can separate modified RNA sequences from their unmodified counterparts. We also document new, qualitative signal signatures that characterize these modifications from otherwise normal RNA bases, which we were able to discover from the visualization. ConclusionsSequoia’s interactive features complement existing computational approaches in nanopore-based RNA workflows. The insights gleaned through visual analysis should help users in developing rationales, hypotheses, and insights into the dynamic nature of RNA. Sequoia is available athttps://github.com/dnonatar/Sequoia. 
    more » « less
  4. Narrative visualization is a popular style of data-driven storytelling. Authors use this medium to engage viewers with complex and sometimes controversial issues. A challenge for authors is to not only deliver new information, but to also overcome people’s biases and misconceptions. We study how people adjust their attitudes toward (or away from) a message experienced through a narrative visualization. In a mixed-methods analysis, we investigate whether eliciting participants’ prior beliefs, and visualizing those beliefs alongside actual data, can increase narrative persuasiveness. We find that incorporating priors does not significantly affect attitudinal change. However, participants who externalized their beliefs expressed greater surprise at the data. Their comments also indicated a greater likelihood of acquiring new information, despite the minimal change in attitude. Our results also extend prior findings, showing that visualizations are more persuasive than equivalent textual data representations for exposing contentious issues. We discuss the implications and outline future research directions. 
    more » « less